Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
eNeuro ; 9(2)2022.
Article En | MEDLINE | ID: mdl-35396256

θ-Scale coordination of prelimbic medial prefrontal cortex (mPFC) local field potentials (LFPs) and its influence via direct or indirect projections to the ventral hippocampus (vHC) and dorsal hippocampus (dHC) during spatial learning remains poorly understood. We hypothesized that θ frequency coordination dynamics within and between the mPFC, dHC, and vHC would be predetermined by the level of connectivity rather than reflecting differing circuit throughput relationships depending on cognitive demands. Moreover, we hypothesized that coherence levels would not change during learning of a complex spatial avoidance task. Adult male rats were bilaterally implanted with EEG electrodes and LFPs recorded in each structure. Contrary to predictions, θ coherence averaged across "Early" or "Late" training sessions in the mPFC-HC, mPFC-mPFC, and HC-HC increased as a function of task learning. Coherence levels were also highest between the indirectly connected mPFC-dHC circuit, particularly during early training. Although mPFC postacquisition coherence remained higher with dHC than vHC, dynamic mPFC coherence patterns with both hippocampal poles across avoidance epochs were similar. In the 3 s before avoidance, a regional temporal sequence of transitory coherence peaks emerged between the mPFC-mPFC, the mPFC-HC, and then dHC-dHC. During this sequence, coherence within θ bandwidth fluctuated between epochs at distinct subfrequencies, suggesting frequency-specific roles for the propagation of task-relevant processing. On a second timescale, coherence frequency within and between the mPFC and hippocampal septotemporal axis change as a function of avoidance learning and cognitive demand. The results support a role for θ coherence subbandwidths, and specifically an 8- to 9-Hz mPFC θ signal, for generating and processing qualitatively different types of information in the organization of spatial avoidance behavior in the mPFC-HC circuit.


Prefrontal Cortex , Theta Rhythm , Animals , Avoidance Learning , Electroencephalography , Hippocampus , Male , Rats
2.
J Neurosci ; 42(10): 1945-1957, 2022 03 09.
Article En | MEDLINE | ID: mdl-35101965

Phosphatase and tensin homolog (PTEN) is a major negative regulator of the phosphatidylinositol-3-kinase (PI3K)/Akt/mechanistic target of rapamycin (mTOR) pathway. Loss-of-function mutations in PTEN have been found in a subset of patients with macrocephaly and autism spectrum disorder (ASD). PTEN loss in neurons leads to somal hypertrophy, aberrant migration, dendritic overgrowth, increased spine density, and hyperactivity of neuronal circuits. These neuronal overgrowth phenotypes are present on Pten knock-out (KO) and reconstitution with autism-associated point mutations. The mechanism underlying dendritic overgrowth in Pten deficient neurons is unclear. In this study, we examined how Pten loss impacts microtubule (MT) dynamics in both sexes using retroviral infection and transfection strategies to manipulate PTEN expression and tag the plus-end MT binding protein, end-binding protein 3 (EB3). We found Pten KO neurons sprout more new processes over time compared with wild-type (WT) neurons. We also found an increase in MT polymerization rate in Pten KO dendritic growth cones. Reducing MT polymerization rate to the WT level was sufficient to reduce dendritic overgrowth in Pten KO neurons in vitro and in vivo Finally, we found that rescue of dendritic overgrowth via inhibition of MT polymerization was sufficient to improve the performance of Pten KO mice in a spatial memory task. Taken together, our data suggests that one factor underlying PTEN loss dependent dendritic overgrowth is increased MT polymerization. This opens the possibility for an intersectional approach targeting MT polymerization and mTOR with low doses of inhibitors to achieve therapeutic gains with minimal side effects in pathologies associated with loss of neuronal PTEN function.SIGNIFICANCE STATEMENT Loss of Pten function because of genetic deletion or expression of mutations associated with autism spectrum disorder (ASD), results in overgrowth of neurons including increased total dendritic length and branching. We have discovered that this overgrowth is accompanied by increased rate of microtubule (MT) polymerization. The increased polymerization rate is insensitive to acute inhibition of mechanistic target of rapamycin (mTOR)C1 or protein synthesis. Direct pharmacological inhibition of MT polymerization can slow the polymerization rate in Pten knock-out (KO) neurons to rates seen in wild-type (WT) neurons. Correction of the MT polymerization rate rescues increased total dendritic arborization and spatial memory. Our studies suggest that phosphatase and tensin homolog (PTEN) inhibits dendritic growth through parallel regulation of protein synthesis and cytoskeletal polymerization.


Autism Spectrum Disorder , Brain , Microtubules , PTEN Phosphohydrolase , Animals , Autism Spectrum Disorder/enzymology , Autism Spectrum Disorder/metabolism , Autism Spectrum Disorder/pathology , Brain/cytology , Brain/enzymology , Brain/metabolism , Female , Humans , Male , Mice , Microtubules/metabolism , Neuronal Plasticity/physiology , PTEN Phosphohydrolase/genetics , PTEN Phosphohydrolase/metabolism , Polymerization , Sirolimus/pharmacology , TOR Serine-Threonine Kinases/metabolism
...